• Join Today!

Become a member and connect with:

  • An Active Online Community
  • Articles and Advice on SCD
  • Help Understanding Clinical Trials

UH Researcher Reports the Way Sickle Cells Form May Be Key to Stopping Them


University of Houston associate professor of chemistry, Vassiliy Lubchenko, is reporting a new finding in Nature Communications on how sickle cells are formed. Lubchenko reports that droplets of liquid, enriched in hemoglobin, form clusters inside some red blood cells when two hemoglobin molecules form a bond – but only briefly, for one thousandth of a second or so.

The mystery of how the clusters form has long puzzled scientists. In patients with the inherited blood disorder known as sickle cell disease, or anemia, abnormal hemoglobin molecules line up into stiff filaments inside red blood cells, distorting their shapes and making it difficult for the blood cells to flow through narrow blood vessels. For the filaments to grow, the protein first congregates into tiny liquid droplets that are bigger than an atom, but so small their measurements are counted in increments between microscopic and macroscopic, called mesoscopic.

 

https://www.onescdvoice.com/wp-content/uploads/2020/09/Sickle-cell.jpg

expertly curated content related to this topic

To improve your experience on this site, we use cookies. This includes cookies essential for the basic functioning of our website, cookies for analytics purposes, and cookies enabling us to personalize site content. By clicking on 'Accept' or any content on this site, you agree that cookies can be placed. You may adjust your browser's cookie settings to suit your preferences. More information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close