• Join Today!

Become a member and connect with:

  • An Active Online Community
  • Articles and Advice on SCD
  • Help Understanding Clinical Trials
scientific articles

The clinical effectiveness and cost-effectiveness of primary stroke prevention in children with sickle cell disease: a systematic review and economic evaluation

key information

source: Health Technology Assessment

year: 2012

authors: Cherry MG, Greenhalgh J, Osipenko L, Venkatachalam M, Boland A, Dundar Y, Marsh K, Dickson R, Rees DC


Sickle cell disease (SCD) is a recessive genetic blood disorder, caused by a mutation in the β-globin gene. For children with SCD, the risk of stroke is estimated to be up to 250 times higher than in the general childhood population. Transcranial Doppler (TCD) ultrasonography is a non-invasive technique which measures local blood velocity in the proximal portions of large intracranial arteries. Screening with TCD ultrasonography identifies individuals with high cerebral blood velocity; these children are at the highest risk of stroke. A number of primary stroke prevention strategies are currently used in clinical practice in the UK including blood transfusion, treatment with hydroxycarbamide and bone marrow transplantation (BMT). No reviews have yet assessed the clinical effectiveness and cost effectiveness of primary stroke prevention strategies in children with SCD identified to be at high risk of stroke using TCD ultrasonography.

To assess the clinical effectiveness and cost-effectiveness of primary stroke prevention treatments for children with SCD who are identified (using TCD ultrasonography) to be at high risk of stroke.

Two randomised controlled trials met the inclusion criteria involving a study population of 209 participants. One compared blood transfusion with standard care for children who are identified as being at high risk of stroke using TCD ultrasonography. In this trial, one patient in the transfusion group had a stroke (1/63) compared with 11 children in the standard care group (11/67). The other trial assessed the impact of halting chronic transfusion in patients with SCD. Sixteen patients in the transfusion-halted group had an event (16/41) (two patients experienced stroke and 14 reverted to abnormal TCD velocity); there were no events in the continued-transfusion group (0/38). No meta-analyses of these trials were undertaken. No relevant economic evaluations were identified for inclusion in the review. The de novo modelling suggests that blood transfusions plus TCD scans (compared with just TCD scans) for patients with SCD at high risk of stroke, aged >= 2 years, may be good value for money. The intervention has an incremental cost-effectiveness ratio of £24,075 per quality-adjusted life-year gained, and helps avoid 68 strokes over the lifetime of a population of 1000 patients. The intervention costs an additional £13,751 per patient and generates 0.6 extra years of life in full health per patient. The data available for the economic analysis are limited. Sensitivity analyses and validation against existing data and expert opinion provide some reassurance that the conclusion of the model is reliable but further research is required to validate these findings.

organization: University of Liverpool

DOI: 10.3310/hta16430

read more full text source